An Alternative Method For Performing Board level
Simulations involving Microprocessors

Gary Bolotin

Jet I'repulsion laboratory
California Institute of Technology
4800 oak Grove Drive
Pasadena, CA 91109
bolotin@telerobotics.jpl.nasa.gov
818 354-4126 FAX 818 393-5007

Abstract

This paper will present an alternative method for performing board level
simulations of designs involving microprocessors. This technique makes u sc.
of only a standard “C” compiler and simple simulation library functionsto
perform accurate board level simulations. Thistcchnique was used to simulate.
the 1BM 1750 based processor that interfaced to the ASICs that arc being
developed for the CA SSINI spacecraft. Conventional processor modeling
techniques involvethe USC of hardware modeling orcextensive behavioral
models of the microprocessor. These techniques arc expensive in both cost
and rcsources required.

Summary

When developing ASICs that interface to microprocessors, it is desire.d to
perform a board level simulation that shows that the ASICs under development
will function at the systemlevel. This requires a simulation model of the
processor. This model can beimplemented using onc of the following methods:

1). Hardware Modeling
2). Behavioral Model of Processor (softwarc - VHDI))
3). Buslevel modelof processor.

1 will start by briefly describing thefirst two methods. The third method, the
bus level model of the processor will thenbe discussed in detail.

The hardware modeling technique can vary from using the real procecssor,
with a discrete logic or FPGA implementation of the ASIC,to using a hardware
modeling library, similar to the Mentor 1] ML. Both Of thcsc methods USC the
actual microprocessor to perform the simulation. Although this technique is
quilt accurate, it is very cxpensive.

When using a software mode.1l of the microprocessor a model is developed
which willsimulate the microprocessor in every mode of operation, ie.
instruction fetch, cxccute, prefetching of instructions, cct. All internal
registcrs and interactions need to be modeled. The software that needs to be
developed can be quite extensive. This technique is also quilt expensive.

The two techniques justdescribed, all model the microprocessor down at least
to the. register level. Both rely on native code being presented toit. Assuming
onc is simulating a 8086 based systcm on a simulator running on a SUN
workstation, onc would need a 8086 cross compiler that runs on the SUN
workstation in order to perform the board simulation. Thc 8086 test software
would be compile.d and linked on the SUN. The resulting cxccutable image
would then be loaded into the simulator, perhaps by storing it in a ROM model.
This is a very time consuming process. In addition the processor will be
repeatedly fetching code from memory. An interaction which when shown to
work once in the simulation, need not bercpcated. Another drawback is that
once the processor fctches data of an unknown value, for what cver the
reason, the entire simulation is likely to be corrupted.

The technique that is to be described, makes usc of the fact that when testing
out whether an ASIC will work in the system, thc designer is concerned
mainly with whether the. ASIC under development will interact corrcctly with
the microprocessor and other dc.vices, not in developing code or acomplicated
processor model.

The, basi¢ devclopment flow is shown in Figure 1. Test vectors arc produced
using a C language test file which when run on the simulators host
computer, will produce test vectors that can bc applied to the simulator, Using
simulator commands these vectors manipulate the pins of the processor in
such a way as tosimulate its operation in the system. Using a simulator system
call, the vectors can also check for proper opcration. For example on a read
cycle thetest vectors cantest that proper data has been read back. An error
message can be printed if the data read is not what is expected .

As an example, suppose we¢ want to simulate a processor with a very protocol
bus scheme as illustrated in figure 2 and 3, anddcscribed as follows.

Write Cycle
1). Address and Data arc put on to the bus.
2). The signal ADVn is asscricd.
3). Wait for slave. 1o asscrt DTACKn.
4). Decasscrt ADVn,
5). Remove. Address and Data.
6). Wait for DTACKn 1o be deasseried.

Read Cycle
1). Address is put on to the bus.
2). The signal ADVn is asseried.
3). Wait for slave. toasscrt DTACKn,
4). Sample Data lines.
5). Dcassert ADVn.
6). Remove Address and Data.
7). Wait for DTACKn to be deasscrted.

Two basic routines need tobe written, onc to simulate a read cycle and oncto
simulatc the write cycle. The read routine is called with the address of the data
byle 10 be read, and the value that is to be expected. When exccuted, if the data
read is different then what is expected, an crror message will be printed in the
simulator list window. This is handled by the routine check. output. The
routine, check..output is a simulator specific macro that compares a signal to a
expected value, and will print an error message if values compared arc not
equal. The write routine is called with the address of the data byte tobe
writticn and the data valuc.

write(address, data- cxpected)

unsigned int address,data_expected;

{
printf ("’ forc.c ADDRESS %x\n,address);
print f("run %d\n",TSET)
printf("'forcc ADVn O);
printf("force WRn O);
printf("’brcak DTACKn O);
printf("’chcck- output(DATA,data_cxpected)\n");
printf("’forcc WRn1l);
printf("’'forcc ADVn 1);
print f("run%dwan",THOLD)
print f('forgct force AD D RESS\n);
print{("forget force D ATA \n);

)

rcad(address, data)

unsigned int address, data;

{ prinif(’’forcc AD D RESS % x\n,addrcss);
printf(’"forcc DATA %x\n,address);
print {("run %d\n", TSET)
printf("'forcc RDn O);
printf("'forcc ADVn O);

[J1-illtf("brcak DTACKn O);

check. output(DATA,data_cxpected);
prinlf(’’forcc Rbnl);

prinlf(’’forcc ADVn 1);

print f("run %d\n",T1101.D)
printf(’’forgct force ADDRESS /n);

)

We can now usec the above routines to simulate the processor interfacing with
the rest of the system. Instruction fetches can be simulated by reading from
ROMor RAM memory spaces. ASIC functionality canbe tested by writing to
ASIC registers and reading back the expecied results.

As an example, we¢ can usc the routines just described, to test a block of ASIC
registers that arc both readable and writcable. Wc can write a simple loopto
perform this function as follows.

for (addr = START_BLOCK;addr <= STOP_BI.OCK, addr+ -t)
write. (addr, JA"I"’ J1:RN);
rcad(addr,PATTERN);

This routine is quite simple. The same routine that is developed to test the ASIC
in the simulated cnvironment can be also uscd to test the ASIC in the real
system after the ASIC is fabricated. This is made possible because tile. “C”
language is portable from sysiemto system. If on the other hand, the test
vectors were written in a simulator specific language, the test vectors
developed will have little use outside the simulator.

If wc were todo the same thing using a bechavioral model of the processor, wc
would first have to compile the code. The code would have to beloaded in the
simulation some, how. The simulator would then betoldto run. Correct
operation would most likely be verified by hand, by examining traces of the
performed Read cycles, a very time consuming andcrror prone process.

Conclusion

This technique for simulating microprocessors is quite simple and elegant and
incxpensive. This method frees the user from developing code native to the.
target processor thus allowing the user to concentrate on the task at hand;
verifying that the. ASIC under development will inte ract correetly with the
rest of the system.

References
[1] Zainalabedin Navabi, "Using VIHDI. for Modeling and Design of Processing

Units", Fifth Annual I1EEE International ASIC Conference and Yxhibit,
September 21 -75, 1 992,

_>.

"C:' —»| Force Simulator
Compiler :
File
Figure 1. Test Vector Development Flow
i tsot | i thold
Address —¥ valid y—
5
DATA —; { vaiid) | —
ADVn J—
RDn /
A N
DTACKn , ~ l)'
i
Figure 2. Read Cycle
tset thold |
Address —X valid) a—
patA —X valid) mm—
ADVR " VTN —T]
WRn D \ / \
N N
DT ACKn ~ 6 -

Figure 3.

Write Cycle

List
File

